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We formulate and study the effective low-energy quantum theory of interacting long-wavelength acoustic
phonons in carbon nanotubes within the framework of continuum elasticity theory. A general and analytical
derivation of all three- and four-phonon processes is provided and the relevant coupling constants are deter-
mined in terms of few elastic coefficients. Due to the low dimensionality and the parabolic dispersion, the
finite-temperature density of noninteracting flexural phonons diverges and a nonperturbative approach to their
interactions is necessary. Within a mean-field description, we find that a dynamical gap opens. In practice, this
gap is thermally smeared, but still has important consequences. Using our theory, we compute the decay rates
of acoustic phonons due to phonon-phonon and electron-phonon interactions, implying upper bounds for their
quality factor.
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I. INTRODUCTION

Even after more than one decade of very intense research
efforts,1 the unique electronic and mechanical properties of
carbon nanotubes �CNTs� continue to attract considerable in-
terest. A major driving force for this interest comes from the
prominent role played by phonons in CNTs. Phonons are
crucial when interpreting experimental data for resonant Ra-
man or photoluminescence excitation spectra2,3 and for the
understanding of electrical4 and thermal5 transport in CNTs.
Moreover, phonons are responsible for interesting nanoelec-
tromechanical effects in suspended CNTs6–10 and they lead
to quantum size effects in the specific heat.11 The real-time
nonlinear dynamics of a CNT phonon mode has also been
monitored experimentally by femtosecond pump-probe tech-
niques �coherent phonon spectroscopy�.12,13

Recent experiments have shown that mechanical oscilla-
tions of suspended carbon nanotubes can be excited by a
cantilever and detected by scanning force microscopy.14,15

Such experiments yield both the frequency � and the quality
factor Q=� /� �with decay rate �� of the respective phonon
mode. The so far observed15 values, Q�104, imply signifi-
cant decay rates even at rather low temperatures and require
to identify the relevant decay channels for phonons in indi-
vidual CNTs. Our paper is primarily devoted to understand-
ing the importance of phonon-phonon interactions in such
decay processes. The quality factor can also be extracted
from Raman spectroscopy3 and from nanoelectromechanical
measurements using phonon-assisted Coulomb blockade
spectroscopy7 or capacitive detection of mechanical
oscillations.8 In principle, coherent phonon spectroscopy also
allows to access damping rates of phonon modes and hence
their quality factors. Very recently, the possibility of cooling
a vibrating carbon nanotube to its phononic ground state has
also been discussed.16

The recent experimental progress described above high-
lights the need for a reliable theory of phonon-phonon �ph-
ph� interactions in CNTs. On the theoretical side, many au-
thors have analyzed the noninteracting problem, i.e., the

harmonic �or linear� theory, which allows to derive explicit
theoretical results for the thermal conductance17,18 and for
the specific heat.19 Motivated by the observation that
molecular-dynamics calculations seem to be in good agree-
ment with thin-shell model predictions,20 several theoretical
works21–25 have adapted thin-shell hollow cylinder
models26,27 to the calculation of phonon spectra. However,
the thin-shell approach leaves open the question of how to
actually choose the width of the carbon sheet. A popular and
more microscopic approach is to instead start from force-
constant models,28–30 taking into account up to fourth-
nearest-neighbor couplings in the most advanced
formulations.31,32 These calculations predict four acoustic
phonon branches �with ��k→0�=0�, namely, a longitudinal
stretch mode, a twist mode, and two degenerate flexural
modes �see Sec. II C for details�. The resulting phonon spec-
tra are in very good agreement with a much simpler calcula-
tion based on continuum elasticity theory,33,34 building on the
known elastic isotropy of the honeycomb lattice.35 The elas-
tic approach will be employed in our study as well. Refer-
ence 36 provides a general discussion of the accuracy of
elastic continuum theories for phonons in CNTs. For very
small CNT radius R, however, hybridization effects involv-
ing carbon � orbitals lead to qualitative changes, elastic con-
tinuum theories �at least in the form below� may break down,
and first-principles calculations become necessary.37,38

In contrast, the problem of ph-ph interactions in CNTs is
much more difficult and has been treated in only a few
works, although phonon anharmonicities are important for
several physical observables,39–41 e.g., for thermal expansion
�which is a controversial issue in CNT theory42�, to explain
the stability of low-dimensional materials �which would be
unstable in harmonic approximation due to the Mermin-
Wagner theorem�, in order to establish a finite thermal con-
ductivity or to provide a finite lifetime for phonons. The
latter issue is particularly relevant in our context, but aside
from a numerical high-temperature study43 which ignored
the �lowest-lying� flexural phonons, to the best of our knowl-
edge ph-ph interactions in CNTs have only been studied by
Mingo and Broido.18,44 Their work considered three-phonon
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processes and their effects within a Boltzmann transport
equation. The main conclusion of Refs. 18 and 44 was that
anharmonic effects are generally weak but important in es-
tablishing upper bounds for the thermal conductance. In ad-
dition, they computed the length scale up to which phonons
show ballistic motion. Where applicable, our results below
are in accordance with theirs, but four-phonon processes
�which govern the decay of flexural phonons� have not been
studied so far.

We shall consider two important mechanisms for the de-
cay of long-wavelength acoustic phonons in single-wall
CNTs, namely, electron-phonon �e-ph� and ph-ph scatterings.
We show that the dominant e-ph coupling terms �resulting
from the deformation-potential contribution� do not allow for
phonon decay due to kinematic restrictions and thus an in-
trinsic upper bound for the temperature-dependent quality
factor of the various modes can be derived from ph-ph inter-
actions alone. These upper bounds are given below. The
problem of phonon decay has in fact a rather long history.
Early work on the decay of an optical phonon into two
acoustic phonons via anharmonicities45,46 proposed a scheme
for nonlinear phonon generation. Phonon decay via ph-ph
interaction is also important for the understanding of
neutron-scattering data40 and for the collective excitations in
liquid helium.47 Such effects have even been considered in a
proposal for a phonon-based detector of dark matter.48 Gen-
eral kinematic restrictions often prevent the decay of phonon
modes. Lax et al.49 showed that a given acoustic phonon
cannot decay into other modes with higher velocity at any
order in the anharmonicity. For the lowest-lying acoustic
phonon mode, one then expects anomalously long lifetimes,
while the higher acoustic modes typically decay—in three-
dimensional �3D� isotropic media—with rate �� �p�5 for
phonon momentum p.35,50 Such questions are particularly in-
teresting in the CNT context, where a degenerate pair of
flexural modes has the lowest energy and the low dimension-
ality and the quadratic dispersion relation of the flexural
mode may give rise to unconventional behavior.

Before describing the organization of the paper, we pause
for some guidance for focused readers. Experimentally
minded readers can find our central predictions for the decay
rate �and hence the quality factor� of the low-energy phonon
modes in Eqs. �54�, �58�, and �67�. The dependence of the
resulting Q factors on the CNT radius R is shown in Fig. 2.
Those interested in the main new theoretical results will find
them in Eqs. �29� and �35�, where the complete low-energy
Hamiltonian for interacting acoustic phonons in single-wall
CNTs is given, with the modified flexural dispersion relation
�45�. This modification takes into account the instability of a
harmonic theory implied by the Mermin-Wagner theorem
and includes interaction effects in a nonperturbative manner.
The calculation of the decay rates is then possible in a per-
turbative manner and leads to the results quoted above.

Let us conclude this introduction with the organization of
the paper. In this work, based on the elastic continuum de-
scription, we formulate a complete and analytical theory of
interacting long-wavelength acoustic phonons in single-wall
CNTs. In Sec. II we show that the simplicity of the elastic
approach allows us to go beyond the harmonic approxima-
tion �which is briefly reviewed in Sec. II C� and thereby pro-

vides a complete theory of all possible three- and four-
phonon scattering processes, described in detail in Sec. III.
The theory is then applied in Sec. IV to the calculation of
phonon decay rates. We thereby infer intrinsic upper bounds
for the quality factor of the relevant acoustic modes. We
comment on effects of e-ph interactions on the quality factor
in Sec. V and end the paper with a discussion and an outlook
in Sec. VI. Calculational details have been relegated to Ap-
pendixes A and B. Finally, we note that while some of our
results are also relevant to two-dimensional �2D� graphene
monolayers,51–53 for the sake of clarity, we restrict ourselves
to the CNT case throughout the paper. We sometimes set
�=1 in intermediate steps.

II. NONLINEAR STRAIN TENSOR AND ELASTIC
THEORY

In this section we shall develop the low-energy theory of
interacting long-wavelength acoustic phonons in CNTs. To
be specific, we first discuss semiconducting single-wall
CNTs, where e-ph scattering processes can safely be ignored.

A. Strain tensor in cylindrical geometry

We start from a continuum description, where long-
wavelength phonons are encoded in the three-dimensional
displacement field, u, with local-frame components un=x,y,z
�see below�. The surface of an undeformed cylinder, repre-
senting the CNT with radius R, is parametrized as

R�r� = Rez�x� + yey, r = �x,y� . �1�

We use cylindrical coordinates with x /R �where
0�x	2
R� denoting the angular variable. The correspond-
ing local-frame unit vector is ex�x�, while ey points along the
cylinder axis and ez�x� is perpendicular to the cylinder sur-
face, i.e., z corresponds to the radial coordinate. Note that
R�xez=ex and R�xex=−ez, and R depends only on the coor-
dinates r= �x ,y� parametrizing the cylinder surface. Our con-
vention for the coordinates follows the notation of Ref. 33,
which is convenient because it connects the problem on the
cylinder �CNT� to the one on the plane �graphene�.

The surface of the deformed cylinder is then parametrized
in terms of the displacement field as

x�r� = R�r� + u�r� = R�r� + �
n=x,y,z

un�r�en�x� . �2�

Equations �1� and �2� imply the relation

dx = �dux + �1 +
uz

R
	dx
ex�x� + �duy + dy�ey

+ �duz −
ux

R
dx
ez�x� , �3�

where contributions come both from the variation of the dis-
placement field and from the change in the local frame.
Given the displacement field, the symmetric strain tensor
uij�r�, with i , j=x ,y, can be obtained from the defining
relation35
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uxxdx2 + uyydy2 + 2uxydxdy =
1

2
�dx2 − dR2� . �4�

Employing Eq. �3�, after some algebra, the strain tensor fol-
lows. It is composed of a linear and a nonlinear part in the
displacement field, u=ulin+unlin,

2uij
lin = Diuj + Djui, �5�

2uij
nlin = �

n=x,y,z
�Diun��Djun� , �6�

where we use covariant derivatives,

Dxux =
�ux

�x
+

uz

R
, Dxuz =

�uz

�x
−

ux

R
, �7�

while Dyun= �
�y un and Dxuy = �

�xuy.
One easily verifies that the strain tensor uij respects fun-

damental symmetries. In particular, uij =0 for arbitrary rigid
translations or rotations of the whole cylinder. For transla-
tions, both the linear and the nonlinear parts of the strain
tensor vanish separately, but this is not the case for rotations.
While uij

lin=0 under infinitesimal rotations, the full nonlinear
strain tensor must be kept in order to correctly account for
uij =0 under finite rotations.

B. Elastic energy density

The Hamiltonian density is given by the sum of the ki-
netic and the elastic energy densities

H =
1

2�M
�

n

pn
2 + U�u� , �8�

where �M =3.80�10−7 kg /m2 is the mass density of
graphene and pn is the canonically conjugate momentum to
un. The theory is quantized via the standard commutation
relations �with r= �x ,y� and n ,n�=x ,y ,z�,

�pn�r�,un��r���− = − i�
nn�
�r − r�� . �9�

Armed with the nonlinear strain tensor, progress is now pos-
sible by invoking symmetry considerations and the usual as-
sumption of a space-time local elastic energy density
U=U�u�r , t�� depending only on the strain tensor. The elastic
energy density is then expanded in the strain tensor up to
fourth order, U�u�=U2+U3+U4. This expansion will fully ac-
count for all elementary ph-ph scattering processes involving
at most four phonons. In order to give explicit expressions,
we will exclude the case of ultrathin CNTs, which is difficult
to model with an elastic continuum approach. For extremely
small radius, �−
 orbital hybridization effects due to the
curvature of the cylinder can lead to dramatic effects and, in
particular, may change the honeycomb lattice structure.38 In
practice, this means that we require R�4 Å. In that case,
curvature effects generally scale as 1 /R2 and, as outlined in
Appendix A, their inclusion is possible on phenomenological
grounds within our nonlinear elasticity theory. Ignoring cur-
vature effects for the moment, a straightforward connection
to the corresponding planar problem of graphene can be es-

tablished. Since graphene’s honeycomb lattice is isotropic
with respect to elastic properties,35 U�u� can only depend on
invariants of the strain tensor under the symmetry group
O�2�. Independent invariants can then be formed using the
trace of the strain tensor, Tr u, and its determinant, det u
= ��Tr u�2−Tr u2� /2.

Starting with U2�u�, quadratic in the strain tensor, one
arrives at the familiar expression35

U2�u� =
�

2
�Tr u�2 + � Tr u2, �10�

where � and � are Lamé coefficients. Their value in graphene
is estimated to be �see, e.g., Refs. 33 and 54�

K

�M
� 2.90 � 108m2

s2 ,
�

�M
� 1.51 � 108m2

s2 , �11�

with the bulk modulus K=�+�. The 2D Poisson ratio then
corresponds to

� =
K − �

K + �
� 0.31, �12�

in agreement with that computed using an empirical force-
constant model.55 Note that U2�u� is already nonlinear in the
displacement field due to the nonlinearity �6� of the strain
tensor. We shall refer to such nonlinearities, resulting already
from U2, as geometric. Geometric nonlinearities do not in-
volve new material parameters beyond the Lamé coeffi-
cients.

Apart from geometric nonlinearities, there are also anhar-
monic contributions �U3 and U4� due to higher-order terms in
the expansion of the elastic energy density in the strain ten-
sor. In cubic order, one can build three invariants from the
strain tensor, namely, Tr u3, Tr u2 Tr u, and �Tr u�3.
However, these invariants are not independent since
2 Tr u3=3 Tr u Tr u2− �Tr u�3. Hence there are just two new
anharmonic couplings in third order, denoted as �1 and �2,
leading to

U3�u� = �1�Tr u�3 + �2 Tr u2 Tr u . �13�

Taking u=ulin, this produces three-phonon interaction pro-
cesses from anharmonic terms in the elastic energy density,
on top of the geometric nonlinearities. Note that the nonlin-
ear part unlin then causes four-phonon processes �or higher
orders� from Eq. �13�. Finally, in quartic order there are five
invariants,

Tr u4, Tr u3 Tr u, �Tr u2�2, Tr u2�Tr u�2, �Tr u�4.

However, because of the identities

2 Tr u4 = − �Tr u�4 + �Tr u2�2 + 2�Tr u�2Tr u2,

Tr u Tr u3 = Tr u4 −
1

2
��Tr u2�2 − �Tr u�2Tr u2� ,

only three out of the five invariants are independent. With
fourth-order anharmonic couplings ��1 ,�2 ,�3�, we can thus
write
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U4�u� = �1�Tr u�4 + �2�Tr u�2Tr u2 + �3�Tr u2�2. �14�

As we show below, cf. Eqs. �54�, �58�, and �67�, the domi-
nant decay processes for acoustic phonons are governed by
the geometric nonlinearities alone and no parameter esti-
mates for the anharmonic couplings ��1,2,3 and �1,2� are nec-
essary for the calculation of these decay rates. This remark-
able result could not have been anticipated without explicit
computation of all contributions.

The final step is to insert u=ulin+unlin in U�u� and thereby
to separate the harmonic theory �noninteracting phonons, H0�
from interactions �three-phonon, H�3�, and four-phonon, H�4�,
processes�, where H=H0+H�3�+H�4�. We do not take into
account higher-order ph-ph scattering processes beyond the
fourth order. Collecting terms, the harmonic theory corre-
sponds to the Hamiltonian density

H0 =
1

2�M
�

n

pn
2 +

�

2
�Tr ulin�2 + � Tr��ulin�2� . �15�

All possible three-phonon processes are encoded in

H�3� = � Tr unlin Tr ulin + 2� Tr�ulinunlin� + �1�Tr ulin�3

+ �2 Tr ulin Tr��ulin�2� , �16�

while all four-phonon processes are contained in

H�4� =
�

2
�Tr unlin�2 + � Tr��unlin�2� + 3�1 Tr unlin�Tr ulin�2

+ �2 Tr ulin�2 Tr�ulinunlin� + Tr unlin Tr ulin�

+ �1�Tr ulin�4 + �2�Tr ulin�2Tr��ulin�2�

+ �3�Tr��ulin�2��2. �17�

While this may seem like a rather complicated theory, we
shall see below that the geometric nonlinearities �i.e., the
terms corresponding to the Lamé coefficients � and �� al-
ready generate the most relevant structures.

C. Harmonic theory

Let us first diagonalize the noninteracting Hamiltonian H0
�see Eq. �15�� and thereby determine the phonon spectrum.
Although the results of this section have essentially been
obtained before,33,34 we repeat the main steps in order to
keep the paper self-contained. First, we perform a Fourier
transformation of the displacement field un�r�, introducing
the momentum �k along the y axis and the integer angular-
momentum quantum number �,

un�r� =
1

�2
R
�
k,�

ei�x/R+ikyun�k,�� ,

where un
†�k ,��=un�−k ,−�� and �k
�−�

� dk
2
 , and an analogous

transformation for pn. The commutation relations �9� then
read

�pn�k,��,un��− k�,− ����− = − 2
i�
nn�
���
�k − k�� .

Some algebra yields H0 in the form

H0 =� dxdyH0 =
1

2�M
�
nk�

pn
†�k,��pn�k,��

+
1

2 �
nn�,k�

un
†�k,���nn��k,��un��k,�� , �18�

where the elastic matrix ��k ,��= ��nn���k ,�� is given by

� = �
�2�K+��

R2 + �k2 k�K
R −

i��K+��
R2

k�K
R

�2�

R2 + �K + ��k2 −
ik�K−��

R
i��K+��

R2

ik�K−��
R

K+�

R2

� . �19�

This 3�3 matrix is obviously Hermitian and obeys the time-
reversal symmetry relation35 ��−k ,−��=���k ,��, where the
star denotes complex conjugation. Note that the chirality of
the CNT does not affect the elastic matrix �and hence the
dispersion relation� within the low-energy theory. However,
the situation is different for high-energy optical phonons or
when taking e-ph interactions into account.36

The normal-mode frequencies �J�k ,�� with correspond-
ing polarization unit vectors eJ�k ,�� �the index J labels the
normal modes� then follow from diagonalizing the elastic
matrix

��k,��eJ�k,�� = �M�J
2�k,��eJ�k,�� . �20�

The above symmetries of the elastic matrix imply
�J�−k ,−��=�J�k ,�� and �eJ�k ,����=eJ�−k ,−��. Moreover,
polarization vectors for given k and � are orthonormal,
eJ

��k ,�� ·eJ��k ,��=
JJ�. Expanding the displacement field in
terms of the polarization vectors and introducing boson cre-
ation, aJ

†�k ,��, and annihilation, aJ�k ,��, operators,

�aJ�k,��,aJ�
† �k�,����− = 2

�k − k��
JJ�
���, �21�

we arrive at the quantized noninteracting phonon Hamil-
tonian

H0 = �
Jk�

��J�k,���aJ
†�k,��aJ�k,�� +

1

2
	 . �22�

The displacement field components are then

un�r� =
1

�2
R
�
Jk�

ei�x/R+iky�eJ�k,�� · en�uJ�k,�� , �23�

with the normal-mode components, expressed in terms of the
boson operators,

uJ�k,�� =� �

2�M�J�k,��
�aJ�k,�� + aJ

†�− k,− ��� . �24�

We next summarize the solutions of the eigenvalue problem
�20�. We are interested in the long-wavelength ��k�R�1�
phonon modes, in particular those with �J�k→0,��=0.

In the �=0 sector, there are three eigenmodes, namely,
J=T �twist mode�, J=L �longitudinal stretch mode�, and
J=B �breathing mode�. For the twist mode, we find for arbi-
trary k the result
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�T�k� = vT�k�, vT =� �

�M
,

eT�k� = ex = �1

0

0
� , �25�

where vT=1.23�104 m /s. Note that ex points along the cir-
cumferential direction. For the longitudinal stretch mode, we
obtain

�L�k� = vL�k� + O�k2�, vL =� 4K�

�M�K + ��
,

eL�k� = � 0

1

− i�kR
� + O�k2� , �26�

where � is given in Eq. �12� and vL=1.99�104 m /s. To
lowest order in �k�R, eL�k� points along the CNT axis ey, as
expected for a longitudinal mode. Finally, the radial breath-
ing mode corresponds to

�B�k� =�K + �

�MR2 + O�k2� ,

eB�k� = � 0

− i�kR

1
� + O�k2� . �27�

This mode has an energy gap, ��B�14 meV for R=1 nm,
scaling as �B�R−1. The quoted results for the velocities vT,L
and the frequency �B, first obtained in Ref. 33, follow from
Eq. �11� and are in accordance with ab initio calculations.54

For angular momentum �= �1, we recover the correct
dispersion relation of the important flexural �J=F� modes.29

They are degenerate and correspond to

�F�k� =
�k2

2m
+ O�k4�, m =

�

�2vLR
,

eF,�=��k� =
1
�2� 1 +

�2�−1�k2R2

4

�kR�1 −
�9+6��k2R2

4 �
�i�1 −

�2�+1�k2R2

4 � � + O�k4� . �28�

Note that for �k�R��2vT /vL and thus for all wavelengths of
interest here, the flexural phonons are the lowest-lying
modes available.

Next we observe that for ��0, longitudinal modes ac-
quire a gap, �L�k=0,��=vT��� /R, and “breathing” modes
have an even larger gap than Eq. �27�, �B�0,��
=�1+�2�B�0,0�. Since we focus on low-energy acoustic
modes, these gapped modes are irrelevant and will not be
studied further. Moreover, the diagonalization of the elastic
matrix �19� shows that for any � flexural modes remain gap-
less. However, for ����1, curvature effects �see Appendix A�
will open gaps for these modes as well.33 For R�1 nm,

such gaps are comparable in magnitude to �or slightly
smaller than� the frequency of the breathing mode �27�.33

Since ph-ph interaction effects become more and more pro-
nounced with decreasing radius R �see below�, the most in-
teresting application range of our theory is 4 Å�R
�1 nm, where most phonon modes have rather large gaps
but a continuum elasticity approach is still reliable. Ignoring
gapped modes is then a good approximation over a wide
temperature regime and in our low-energy approach we need
to retain only gapless modes, i.e., the T mode �25�, the L
mode �26�, and the two degenerate flexural F modes �28�.
The gaplessness of the �= �1 flexural modes is robust
against curvature effects and protected by rotational symme-
try. Note that the resulting theory is only valid on energy
scales below those gaps; for R�0.5 nm, this is justified up
to temperatures of order of 50 K.

From now on, the sums over �J ,�� will then only run over
�T ,0�, �L ,0�, and �F ,��. It is remarkable that for all these
phonon modes, elastic continuum theory is able to yield ac-
curate dispersion relations which are in good agreement with
elaborate force-constant29–32 and ab initio calculations.54

Since the breathing mode �27� may be of interest for future
thermal-expansion calculations, we specify the correspond-
ing three-phonon matrix elements in Appendix B, but for the
main part of the paper we will neglect this mode.

III. PHONON-PHONON INTERACTION PROCESSES

In this section, we evaluate the three- and four-phonon
scattering amplitudes following from Eqs. �16� and �17�, re-
spectively. They are obtained by inserting the normal-mode
expansion �23� for the displacement field into the definition
of the strain tensor �see Eqs. �5� and �6��. We will always
keep the lowest nontrivial order in �k�R�1, but also specify
the next order when cancellation effects are anticipated for
the leading order. It is then straightforward to obtain the full
normal-mode representation of the nonlinear strain tensor.
The result can be found in explicit form in Appendix B.

A. Three-phonon processes

The normal-mode representation of the strain tensor in
Appendix B allows us to write H�3� from Eq. �16� in the form
of a standard three-phonon interaction Hamiltonian40,41 �note
again that �k=�−�

� dk
2
 �,

H�3� =
1

�2
R
�

J1J2J3

�
k1k2

AJ1J2J3
�k1,k2,k3�

� uJ1
�k1�uJ2

�k2�uJ3
�k3� , �29�

where the � summation is implicit when J=F, i.e., J stands
for both the phonon mode index and the angular momentum
�. Due to momentum conservation k3=−k1−k2 and uJ�k ,��
has been defined in Eq. �24�. After some algebra, we obtain
the following nonvanishing three-phonon amplitudes
AJ1J2J3

�k1 ,k2 ,k3� to leading order in �ki�R�1:

ALLL = −
i

2
�1 − ��k1k2k3�2K + �1 − ��2�1 + �1 + �2��2� ,

�30�
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ALTT = −
i

2
��2� + �2�1 − ���k1k2k3 − ��k1

3� , �31�

AL,F�2,F�3
= − i
�2,−�3

��1 + ��k1k2k3, �32�

AT,F�2,F�3
= −

i�2�

4

�2,−�3

k1k2k3�k2 − k3�R , �33�

with � in Eq. �12�. The matrix elements related to the breath-
ing mode can be found in Appendix B. Symmetry under
phonon exchange is taken into account in expressions
�30�–�33� and the �J1 ,J2 ,J3� summation in Eq. �29� runs only
over �LLL�, �LTT�, �LFF�, and �TFF�, while all other matrix
elements vanish identically. In particular, there is no ampli-
tude for LLT processes44 or for the scattering of three twist
modes, TTT. Moreover, all amplitudes involving an odd
number of flexural phonons vanish by angular-momentum
conservation. We also observe that the anharmonic third-
order couplings �1 and �2 do not introduce new physics, but
only renormalize parameter values of coupling terms gener-
ated already by geometric nonlinearities. In fact, the leading
contributions to phonon decay rates turn out to be completely
independent of such anharmonic couplings, as we will show
in Sec. IV �see Eqs. �54�, �58�, and �67� below�.

B. Four-phonon processes and flexural phonon interaction

Next we turn to four-phonon interactions. A similar result
as for three-phonon interactions �see Eq. �29�� can be derived
using the strain tensor given in Appendix B. Since FFF ma-
trix elements vanish, quartic terms are crucial in the case of
flexural modes and we shall only discuss these four-phonon
matrix elements in what follows. It is nevertheless straight-
forward �if tedious� to study also other four-phonon matrix
elements based on the expressions given in Appendix B.

Since the flexural mode is the lowest-lying phonon
branch, FFFF processes provide the only possibility for its
decay at T=0. It turns out that the relevant coupling strength
for such processes is parametrized by

g =

K +
3

16
�K + ��

2
R
� m

�M
	2

, �34�

where K=�+� and m is given in Eq. �28�. Note that
g�1 /R3 and thus flexural phonon interactions become stron-
ger for thinner CNTs.

After some algebra we find

H�4� =
1

2
R
�

k1k2k3

�
���

AF�1,F�2,F�3,F�4
�k1,k2,k3,k4�

�uF�k1,�1�uF�k2,�2�uF�k3,�3�uF�k4,�4� ,

where k4=−�k1+k2+k3�, angular-momentum conservation
implies the condition �1+�2+�3+�4=0, and

AF�1,F�2,F�3,F�4
=

k1k2k3k4

8
�K −

K

6 �
i	j

�i� j +
K + �

4 �
i=1

4

�i	 .

Now for all ��i� combinations with �i=1
4 �i=0 and �i= �1,

one finds �i	j�i� j =−2 and �i�i=1. This allows us to carry
out the � summation and gives

H�4� = g��M/m�2 �
k1k2k3

k1k2k3k4 � uF�k1,+�uF�k2,+�uF�k3,

− �uF�k4,− � . �35�

Note that Eq. �35� is determined by geometric nonlinearities
alone, i.e., by the contribution of the nonlinear part of the
strain tensor in U2�u�. The anharmonic third- and fourth-
order couplings ��1,2 and �1,2,3, respectively� also give rise to
AFFFF contributions, which however contain higher powers
in �ki�R�1. Such anharmonic four-phonon processes are
therefore parametrically smaller than the geometric nonlin-
earity �35� and can be neglected in a low-energy approach.

In coordinate space, Eq. �35� corresponds to a local four-
phonon interaction. To see this, we represent the momentum
conservation constraint in Eq. �35� as


�k1 + k2 + k3 + k4� =� dy

2

e−i�k1+k2+k3+k4�y

and then arrive at

H =� dy� p†�y�p�y�
�̃M

+
�2�̃M

4m2

�2u†�y�
�y2

�2u�y�
�y2

+ g��̃M/m�2� �u†

�y

�u

�y
	2
 , �36�

where �̃M =2
R�M is the effective linear mass density and
the �non-Hermitian� coordinate-space flexural displacement
operator is defined as

u�y� =
1

�2
R
�

k

eikyuF�k,+�

= �
k
� �

2�̃M�F�k�
eiky�aF�k,+� + aF

†�− k,− �� , �37�

with the canonically conjugate momentum field operator

p�y� = �2
R�
k

eikypF�k,− �

= − i�
k

���̃M�F�k�
2

eiky�aF�k,− � − aF
†�− k,+�� .

Since g�0, the interaction among flexural phonons is
repulsive. Therefore phonon localization and two-phonon
bound states56 are not expected to occur.

Remarkably, as we show in detail below, it turns out that
the finite-temperature decay rate �F�k� for a flexural phonon
diverges when the interaction �35� is treated perturbatively. A
related breakdown of perturbation theory for phonon decay
rates was also reported by Perrin57 in a study of optical
phonons in molecular crystals. In that case, the singularity
could be traced to the flatness of the dispersion relation. A
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similar situation occurs for the magnon decay problem in
one-dimensional �1D� spin chains, where the analogous per-
turbation theory also predicts a finite and momentum-
independent T=0 decay rate above a certain threshold, while
the correct �nonperturbative� result vanishes at the
thresholds.58 In our case, the divergence arises due to the
conspiracy of the almost flat dispersion relation,
�F�k�=�k2 /2m, with the low dimensionality �1D�. This im-
plies a macroscopic phonon generation in the noninteracting
case for finite T. For a system of length L, the total number
of �=� flexural phonons follows with the Bose-Einstein dis-
tribution function ��=1 /kBT�,

n��� =
1

e��� − 1
, �38�

as N=2L�kn��F�k��. As a result, the 1D phonon density
�=N /L�2mkBTL /
�2 diverges in the thermodynamic limit
L→� at any finite temperature T. This situation therefore
calls from the outset for a nonperturbative treatment of the
interaction �35�. In view of the divergent noninteracting pho-
non density �, we expect that mean-field theory is able to
properly handle the regularizing effect of the interaction de-
spite the low dimensionality, at least in a semiquantitative
fashion. We thus employ mean-field theory to compute the
1D flexural phonon density ��T� and then use this result in
Sec. IV for the decay rate calculations.

Taking n̄k�= �aF
†�k ,��aF�k ,��� as the only nonvanishing

mean-field parameters in Eq. �35�, the mean-field Hamil-
tonian for the flexural modes is given �up to irrelevant con-
stants� by

HMF = �
k,�=�

���F�k� + 4g��aF
†�k,��aF�k,�� , �39�

where �=�k�n̄k�. In order to derive Eq. �39�, we disregard all
terms involving an unequal number of creation �a� and an-
nihilation �a†� operators �see also Ref. 56�. Moreover, for all
nonvanishing contributions to the mean-field approximation
of Eq. �35� one finds sgn�k1k2k3k4�=1. The resulting self-
consistency equation is then �=2�kn��F�k�+4g��. The mo-
mentum integral can be carried out and yields

� =
kBT�

4g
�T/T��Y�T/T�� . �40�

The temperature dependence of � shows universal scaling
with x=T /T�, where we introduce the temperature scale

T� =
32mg2

kB�2 =
16�2g2

kB�vLR
. �41�

The dimensionless scaling function Y�x� is determined by the
self-consistency condition

�
xY = Li1/2�e−Y� , �42�

with the polylogarithm59 Lis�z�=� j=1
� j−szj. Equation �42� can

be analytically solved in the limits x�1 and x�1 and allows
for numerical evaluation in between those limits. In particu-
lar, we find Y�x�1��− 1

2 ln�
x� and Y�x�1��x−1/3, where
we exploit the relation59 limY→0 Li1/2�e−Y�=�
 /Y. In accor-
dance with our above discussion, we therefore find that in the

noninteracting �T�=0� case, � diverges for any finite T. How-
ever, once interactions are present, a finite flexural phonon
density � emerges, which for T�T� can be written as

��T � T�� =
kBT�

4g
�T/T��2/3. �43�

Using the parameters in Eq. �11�, the scale T� in Eq. �41� is
estimated as

T� �
3.7 � 10−9 K

�R�nm��7 . �44�

Even for the thinnest possible CNTs �where R�0.3 nm�,
this puts T� deep into the sub-milli-Kelvin regime. Assuming
T�T� from now on, we take � as given in Eq. �43�. Within
mean-field theory �see Eq. �39�� nonperturbative effects of
the interaction �35� thus lead to the appearance of a dynami-
cal gap ��=4g� for flexural phonons. We effectively arrive
at a modified flexural dispersion relation,

�F�k� = �� +
�k2

2m
, �45�

characterized by the temperature-dependent gap

����T� = �T/T��2/3kBT�. �46�

From now on, we take Eq. �45� for the dispersion relation of
flexural phonons. Since T�T�, we also observe that the gap
is always thermally smeared, kBT����. Nevertheless, it is
crucial when discussing the decay rate for a flexural phonon.

IV. DECAY RATE AND QUALITY FACTOR OF ACOUSTIC
PHONON MODES

In this section, we study the decay rate of a phonon exci-
tation with longitudinal momentum p=�k�0 and mode in-
dex J=L ,T or F. We compute the finite-temperature decay
rate �J�k ,�� from lowest-order perturbation theory in the rel-
evant nonlinearity. At T=0, this corresponds to the standard
Fermi’s golden rule result.

A. Self-energy calculation

To access the finite-T case, we will first write down the

respective imaginary-time self-energy �̃J�� ,k ,��, where
0��	�� denotes imaginary time. The Matsubara Green’s
function is defined via

�uJ��n,k,��uJ�− �n�,− k�,− ���

= − 2
��
�n,�n�

�k − k��G̃J��n,k,�� ,

where the �n=2
n /�� �integer n� are bosonic Matsubara
frequencies and uJ�� ,k ,�� is defined in Eq. �24�. Employing
Eqs. �22� and �24�, the noninteracting Green’s function is

G̃J
�0���n,k,�� =

− �/�M

�n
2 + �J

2�k,��
=

�

�M
G��n,�J�k,��� . �47�

The function G��n ,�1� has the time representation
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G��,�1� = −
1

��
�
�n

e−i�n�

�n
2 + �1

2 = −
1

2�1
�
�=�

�n���1�e��1�,

�48�

with the Bose function �38�. The full retarded Green’s func-
tion GJ�� ,k ,�� follows after analytic continuation,
i�n→�+ i0+, with the Dyson equation

GJ
−1��,k,�� = �G�0��J

−1��,k,�� − �J��,k,�� , �49�

leading to the on-shell ��=�J�k ,��� rate

�J�k,�� =
�

�M�
Im �J��,k,�� . �50�

The relevant quantity needed to estimate the decay rate is
therefore the self-energy �J�� ,k ,��, whose imaginary-time

version is �̃J��n ,k ,��.
In the self-energy calculation for the various modes

shown below, we will encounter integrals of the type �integer
r�1�

Ir��n;�1, . . . ,�r� = �
0

�

d�ei�n��
j=1

r

G��,� j� . �51�

Employing Eqs. �48� and �38�, we find for r=2 �see also
Refs. 40 and 41�

I2��n,�1,�2� = �
�1,�2=�

�1�2

4�1�2

1 + n��1�1� + n��2�2�
i�n + �1�1 + �2�2

.

�52�

Similarly, for r=3, we obtain57

I3��n;�1,�2,�3�

= −
1

8�1�2�3
�

�1,�2,�3=�

�1�2�3

i�n + �1�1 + �2�2 + �3�3

�
n��1�1�n��2�2�n��3�3�
n��1�1 + �2�2 + �3�3�

. �53�

Let us then proceed with the discussion of the different pho-
non modes, starting with J=L.

B. Longitudinal stretch mode

The dominant contributions to the decay rate for a longi-
tudinal phonon come from the relevant nonvanishing three-
phonon matrix elements, namely, L→L+L in Eq. �30�,
L→T+T in Eq. �31�, and L→F+F in Eq. �32�. The ampli-
tude for the L→L+T process vanishes and such decay chan-
nel could only be possible via higher-order processes involv-
ing the virtual excitation of flexural modes. While one could
compute the corresponding contribution, we expect that it is
negligible against the rate found below. We also anticipate
that the contribution of the process L→T+T is subleading
with respect to that of L→F+F, as dimensional arguments
at T=0 suggest and the explicit finite-T calculation shows.
Therefore, we also neglect this decay channel. Finally, while
the process L→L+L is in principle kinematically allowed

for a strictly linear dispersion relation, energy conservation
cannot be satisfied as soon as one takes into account the
O�k2� corrections to �L�k�. Thus, this decay channel can also
be safely omitted.

The only remaining possibility is then the process
L→F+F, where the two flexural phonons carry opposite an-
gular momentum. Energy conservation then poses no prob-
lem as long as ���vLk �see Eq. �46��. For clarity, we now
focus on this case, where the channel L→F+F provides the
dominant decay mechanism for a L phonon. The lowest or-
der in perturbation theory generating a finite decay rate
comes from the “bubble” diagram �i.e., the second order�,

�̃L��,k� =
4�2

2
R�M
2 � dq

2

�ALFF�k,q1,q2��2G��,�1�G��,�2� ,

where q1,2= �q+k /2 and �1,2��q1,2
2 /2m, and the ampli-

tude ALFF in Eq. �32� is evaluated, say, for �2=−�3=1. The
two Green’s functions correspond to flexural phonons. Using
��1+��=�MvL

2 /2, we then find

�̃L��n,k� =
��vLk�2

2
2R3 � dq�1�2I2��n;�1,�2� ,

where I2 is given in Eq. �52�. For kR�1, after analytic con-
tinuation, we obtain the rate from Eq. �50�. Identifying
�=vLk yields with Eq. �38� the result

�L�k� =
��

4�MR3�
−�

� dq

2

��n��1� + n��2� + 1�
�� − �1 − �2�

+ 2�n��2� − n��1��
�� − �1 + �2�� .

We now need to resolve the 
 functions representing energy

conservation. The first term yields q= �� k
R�2

− k2

4 , while the
second leads to q=− 1

R�2
. We then collect terms, keeping only

the leading order in kR�1 and kBT��vL /R—otherwise the
thermal scale kBT would exceed the smallest gap of the dis-
carded phonon modes and we would need to account for the
effects of the mean-field gap ��. We find

�L�k� =
�

4
�MR4��kR

25/4 coth���vLk/4�

+ �2e−��vL/2�2R sinh���vLk/2�	 . �54�

Since this rate does not depend on the anharmonic couplings
��1,2 and �1,2,3�, we find the remarkable result that the domi-
nant decay rate for the longitudinal phonon is solely deter-
mined by the Lamé coefficients �or, equivalently, by the
sound velocities�. For T=0 and k→0, the rate becomes
universal, i.e., completely independent of material param-
eters. This is due to the fact that in our elastic model the
curvature of the flexural branch �1 /m is proportional to the
longitudinal sound velocity vL. Moreover, the T=0 rate is
��k, i.e., the nonlinear damping effects become important at
long wavelengths.

For an estimate of the quality factor for longitudinal
modes, we now put k=
 /L in QL=�L�k� /�L�k�, with CNT
length L. This yields
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QL�T,L� =
QL�0,L�

coth� 
�vL

4LkBT
	 + 27/4� L


R
exp�−

�vL

2�2RkBT
	 sinh� 
�vL

2LkBT
	 , �55�

with the T=0 result

QL�0,L� = �3.80 � 106��R�nm��3�R/L , �56�

where we used Eq. �11�. For typical parameters, say, R
=0.5 nm and L=500 nm, this gives QL�T=0��1.5�104.

This number for the quality factor implies a surprisingly
strong damping effect due to phonon-phonon interactions
and is similar to what is observed experimentally.15 Note that
this value yet has to be understood as upper bound since
there might be other decay mechanisms. Since ���T=0�=0,
inclusion of the mean-field gap �� in the above derivation
does not affect the estimate �56�. Furthermore, with
QL�0,L��L−1/2, we observe that for sufficiently long CNTs
and low T, the anharmonic decay is always important, in
agreement with the conclusions of Ref. 18 �see our discus-
sion in Sec. I�. The temperature dependence of QL is con-
trolled by the ratio of the longitudinal confinement energy
scale, �vL /L, and the thermal energy, kBT. For
kBT��vL /L, we find

QL�T,L� �

�vL

4kBTL
QL�0,L� �

R7/2

L3/2T
. �57�

We observe that the damping effects get stronger for thinner
CNTs.

C. Twist mode

Next we turn to the twist �J=T� mode, where the vanish-
ing of the T→T+T amplitude and the absence of the �kine-
matically forbidden� T→T+L channel imply that the
T→F+F decay will dominate. The calculation proceeds in
the same way as for the L phonon and in the low-energy
limit, kBT��vT /R and ���vTk, we find

�T�k� =
�

2�M
�vT

vL
	7/221/4�kR�3/2

8
R4 �coth��vTk

4kBT
	

+ 25/4��vL/vT�kR�−3/2exp�−
�vT

2

2�2vLRkBT	 sinh��vTk

2kBT
	� .

�58�

We note that the T=0 rate is �k3/2.
Putting k=
 /L, the quality factor is then

QT�T,L� =

vT/L

�T�T,L�
. �59�

This gives for T=0 the estimate

QT�T = 0,L� � �5.74 � 106��R�nm��3�L/R , �60�

showing that damping of the twist mode, which is energeti-
cally below the L mode, vL /vT�0.62, is much weaker, in

accordance with Ref. 49. In the high-temperature limit, we
find QT�R5/2 / �TL1/2�.

D. Flexural mode

Next we discuss the decay rate �F�k� for the flexural
mode. We put �= +1 �the rate for �=−1 is identical� and
describe the perturbative calculation of �F�k�. The leading
term involves the decay of the phonon into three flexural
phonons, F→F+F+F �see Eq. �35�� corresponding to the
“fishbone” diagram for the self-energy in Fig. 1. Note that
we have already taken into account the self-consistent tad-
pole �first-order� diagram by using mean-field theory, leading
to the dispersion relation �45�. The imaginary-time self-
energy corresponding to the fishbone diagram involves three
Green’s functions, with momenta qi and frequencies
�i=��+�qi

2 / �2m�, where i=1,2 ,3. Employing Eq. �53� and
the interaction strength g in Eq. �34�, we then obtain

�̃F��n,k� =
�M�g2k2

4
2m4 � dq1dq2dq3
q1

2q2
2q3

2

�1�2�3

�q1 + q2 + q3 − k�

� �
�1,�2,�3=�

�1�2�3

i�n + �1�1 + �2�2 + �3�3

�
n��1�1�n��2�2�n��3�3�
n��1�1 + �2�2 + �3�3�

. �61�

The 
 function represents momentum conservation. After
analytic continuation, using the relation 2n����
= �coth���� /2�−1, this yields the rate

�F�k� =
�2g2k2

25
�m4�1 + n���� �
�1,�2,�3

� dq1dq2dq3

�
�q1 + q2 + q3 − k�
�� + �1�1 + �2�2 + �3�3�

��
i=1

3 �qi
2

�i
�coth����i/2� − �i�	 . �62�

We now express the 
 functions as

F

F

F

F F

FIG. 1. Self-energy diagram contributing to the decay rate �F�k�
in leading order �“fishbone diagram”�. Solid lines denote a flexural
phonon propagator, taken from mean-field theory.
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�k − �
i

qi	 =� dy

2

e−i�k−�iqi�y ,


�� + �
i

�i�i	 =� dt

2

ei��+�i�i�i�t,

which decouples the qi integrals and allows to perform the �i
summations. Setting �=�F�k�, the on-shell rate reads

�F�k� =
8g2�1 − ��/��
�2�1 + n���� � dtdye−i�ky−�t�G3�t,y� , �63�

with the correlation function

G�t,y� =
�̃M

m
�

−�

� dq

2


�q2 cos�qy�
2�̃M�F�q�

��cos��F�q�t�coth����F�q�/2� − i sin��F�q�t��

=
�̃M

m
���yu

†��t,y���yu��0,0��0. �64�

Here u�t ,y� is the Heisenberg representation of the flexural
displacement operator u�y� �see Eq. �37�� and the noninter-
acting average �¯�0 is taken with respect to HMF �see Eq.
�39��. The product of three Green’s functions in Eq. �63�
reflects the structure of the fishbone diagram in Fig. 1. Using
the dispersion relation �45� and �� in Eq. �46�, we observe
that the q integral for G�t ,y� is regular.

The rate �F for the decay of the mode with wave vector
k=
 /L then depends only on the two dimensionless quanti-
ties

XL =
L
L� , XT =

T

T�
, �65�

where we define the length scale

L� =

�

�2mkBT�
=


�2

8mg
. �66�

Using Eq. �44�, we obtain the estimate

L���m� � 534�R�nm��4,

which gives L�=33.4 �m for R=0.5 nm. By rescaling all
lengths in units of L� and all frequencies �or inverse times�
in units of kBT� /�, Eqs. �63� and �64� imply a universal
result, where the dependence on material parameters only
enters via T� and L�. Using Eqs. �45� and �46�, after some
algebra, we obtain

��F�XL,XT�
kBT�

=
1

2

1 − exp�−
1

XT
1/3 −

1

XTXL
2 	

1 + XT
2/3XL

2 � dydt

�exp�− i� y

XL
− �XT

2/3XL
2 + 1�

t

XL
2 
	

���
XT

2/3

� dw

2
w
�w − XT

2/3 cos��w − XT
2/3y�

��cos�wt�coth�w/2XT� − i sin�wt��	3

. �67�

For T=0, Eq. �67� can be solved in closed form and gives

�F�XL,XT = 0� =
kBT�

4�3�
. �68�

�In fact, this result easily follows also from Eq. �62�.� Re-
markably, this rate does not depend on the length �XL� of the
CNT, i.e., it is independent of phonon momentum k. Despite
the smallness of T� �see the estimate in Eq. �44�� this predicts
a surprisingly large damping effect due to phonon interac-
tions. Estimating the zero-temperature quality factor as
above, we find

QF�T = 0,L� � �1.98 � 1012��R�nm��6�R/L�2. �69�

Taking L=500 nm and R=0.5 nm, this gives QF�3�104.
The R dependence of the zero-temperature quality factors

for the various modes is summarized in Fig. 2. In the range
of radii considered, it is much stronger for the flexural mode
than for the longitudinal and twist modes, which have an
approximately similar dependence. Note however that QT is
in fact 3 orders of magnitude larger than QL.

However, as discussed in Sec. III B, due to the smallness
of T�, the zero-temperature limit is actually not accessible
experimentally and one is always in the regime T�T�. It is
then interesting to evaluate the rate in the limit XT�1 but
with XT

1/3XL�1, which corresponds to a regime in which the
kinetic energy is much larger than the gap. For sufficiently
short CNTs �or if one evaluates the rate at a larger wave
vector than 
 /L� the two inequalities can be satisfied simul-
taneously. In that case, we find from Eq. �67� that
��F /kBT��XL

3 XT
2. The resulting T2 power-law behavior for

the temperature dependence of the flexural phonon decay
rate is a prediction that should be observable with state-of-
the art experiments.

V. ELECTRON-PHONON COUPLING

In this section, we consider the effects of e-ph couplings
in metallic single-wall CNTs. In contrast to the semiconduct-

0.5 0.6 0.7 0.8 0.9 1
R [nm]

0

2x10
5

4x10
5

6x10
5

8x10
5

Q

FIG. 2. Quality factor for the three low-energy modes at T=0
and L=500 nm as a function of tube radius R. Solid line depicts
QF, dashed line QL, and dotted line 10−3QT.
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ing case studied before, the coupling of phonons to electrons
may contribute another decay channel beyond ph-ph interac-
tions. Within lowest-order perturbation theory, the two
mechanisms are additive for the decay rates and hence also
for the inverse quality factors. Here, we only take into ac-
count the deformation potential as a source for e-ph cou-
pling, as this coupling has a very significant strength.33,34

The phonons, described by the strain tensor uij, create the
deformation potential33

Ve-ph�r� = V0 Tr�ulin�r� + unlin�r�� , �70�

where V0�20 eV �see Ref. 33�. We will consider spinless
electrons at a single Fermi point and eventually multiply by
a factor 4 the final result for the rate to take into account the
electron spin and KK� degeneracies. Moreover, we only take
into account electrons in the lowest transverse subband, with
zero angular momentum. This is justified since the higher
angular-momentum states are separated by a large energy
gap. Then, from the normal-mode representation in Appen-
dix B, we observe that only the L mode couples via the first
term �ulin� in Eq. �70� �the coupling to the F mode requires at
least one electron in a higher angular-momentum state�,
while the F and T phonons couple only via the second �unlin�
term, where two phonons are involved. The electronic con-
tribution to the decay rate of the T phonon is then expected
to be weak and we will focus on the decay of the L and F
modes.

Let us start with the L phonon with momentum �k, where
the relevant lowest-order self-energy diagram due to the first
term in Ve-ph corresponds to the electron-hole bubble. Its
imaginary part, responsible for the phonon decay rate, is
��
��−vFk�−
��+vFk��, where �=vLk. �Note that we use
a linearized dispersion for electrons.� Since the Fermi veloc-
ity is vF�106 m /s�vL, this condition can never be met and
only higher-order contributions can possibly lead to a pho-
non decay. This suggests that the decay rate of the L phonon
due to Eq. �70� is very small and probably negligible against
the ph-ph mechanism.

For the case of a F phonon, the lowest-order contribution
comes from the second term in Eq. �70�, leading to a fish-
bone diagram with two electron lines and a phonon line. The
corresponding imaginary-time self-energy is given by

�̃F��,k� = −
1

��M
� 3V0

2
R
	2

k2�
q

�k − q�2G��,�0� e��,q� ,

�71�

with �0=��+��k−q�2 /2m and the 1D electron polarization
function60

 e��,q� =
�e

2
vF
�
�=�

n���e�e��e�,

where �e=vF�q�. Following the same steps as in Sec. IV, we
then find for the T=0 decay rate

�F�k� � �
q

�e
��F�k� − �0 − �e� ,

which yields the energy conservation condition

q2 − 2qk + �2
vF�q�
vLR

= 0.

For q�0, this condition can only be met if kR�vF / ��2vL�,
i.e., only for short-wavelength phonons. Thus, for the long-
wavelength phonons of interest here, the energy mismatch
between electron-hole pair excitations and the phonon modes
implies that again only higher-order terms can possibly gen-
erate a finite decay rate.

The above discussion therefore suggests that e-ph cou-
plings via the deformation potential do not lead to significant
decay rates of the gapless L and F modes. Their decay
should then be dominated by the ph-ph interaction processes
as described in Sec. IV.

VI. CONCLUSIONS

In this paper, we have formulated and studied a general
analytical theory of phonon-phonon interactions for low-
energy long-wavelength acoustic phonons in carbon nano-
tubes. The continuum elasticity approach employed here re-
produces the known dispersion relations of all gapless
modes, including the flexural mode, �F�k�=�k2 /2m with
“effective mass” m. We have then included the most general
cubic and quartic elastic nonlinearities allowed by symmetry.
Remarkably, the relevant phonon-phonon scattering pro-
cesses giving the dominant contributions to the decay rates
are already found from the geometric nonlinearities �i.e., us-
ing the nonlinear strain tensor in a lowest-order expansion of
the elastic energy density�, and for a quantitative discussion
of the decay rates, only the knowledge of the well-known
Lamé coefficients �or equivalently of the sound velocities� is
necessary.

We have provided a complete classification of all possible
three-phonon processes involving gapless modes, along with
the respective coupling constants. At the level of four-
phonon processes we have focused on the flexural modes,
where a peculiarity is encountered, since the four-phonon
processes lead to a singular behavior of the finite-
temperature decay rate. The physical reason for this singu-
larity is the proliferation of phonons at finite temperature,
implying a divergent 1D density of flexural modes. Interac-
tions effectively regularize this divergence and lead to a fi-
nite density. We have employed mean-field theory to quanti-
tatively describe this mechanism and found a dynamical
temperature-dependent gap ��� for flexural phonons. While
this gap is in practice always below the thermal scale kBT, it
nevertheless leads to important consequences and allows to
compute a well-defined decay rate for flexural phonons in
low-order perturbation theory.

Using this approach, we have determined the decay rate
and the quality factor for all long-wavelength gapless
phonons in carbon nanotubes. We have also shown that
electron-phonon interactions are ineffective in relaxing those
modes due to a mismatch in energy scales. The reported
quality factors �Q� are remarkably small, especially for thin
CNTs, pointing to important phonon damping effects.
Phonon-phonon interactions in CNTs are therefore signifi-
cant and quite strong. Moreover, the values we have found
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are rather close to the typical Q reported in recent
experiments.15 Our predictions represent intrinsic upper
bounds for Q. Such upper bounds can be valuable in assess-
ing the predictions of approximate theories or when inter-
preting experimental data in terms of phonon damping. We
hope that our work will motivate further experimental and
theoretical studies along this line.
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APPENDIX A: CURVATURE EFFECTS

In this appendix, we briefly discuss how to include curva-
ture effects in the nonlinear elastic energy. To that end, we
consider the metric tensor for the cylindrical surface, whose
components �i , j=x ,y=1,2�,

gij = �
n=x,y,z

tn,itn,j ,

are expressed in terms of the ordinary scalar product of tan-
gent vectors

ti = �
n

tn,i�r�en�x� =
�x�r�
�xi

,

with x given in Eq. �2�. The nonlinear strain tensor then
follows equivalently from 2uij =gij −gij

�0�, with the metric ten-
sor gij

�0�=
ij of the undeformed cylinder. The local unit nor-
mal vector is N= �tx� ty� / �tx� ty� and the mean local curva-
ture � of the cylinder is defined as

��r� =
1

2�
ij

bijg
ij ,

where gij is the inverse of gij and the second fundamental
form of the surface is

bij = �
n=x,y,z

Nn� jtn,i.

To lowest order in the displacement fields un, the mean cur-
vature is then given by33

� = �0 +
uz

2R2 +
1

2
� �2uz

�x2 +
�2uz

�y2 	 ,

where �0=−1 /2R is the curvature of the undeformed cylin-
der.

Curvature leads to an additional energy cost due to hy-
bridization effects. One can model this in a phenomenologi-
cal way by adding an additional term

Ucurv�u� = ��� − �0�2

to the elastic energy density, where � is a proportionality
constant. Such effects turn out to be small unless one deals
with ultrathin CNTs, but they provide gaps to flexural modes
with angular momentum ����1. For R�1 nm, these gaps
are typically comparable in magnitude33 to the breathing
mode energy in Eq. �27�.

APPENDIX B: NORMAL-MODE REPRESENTATION OF
THE STRAIN TENSOR

In this appendix, we provide the explicit form of the strain
tensor expressed in terms of the normal-mode displacement
field operators uJ�k ,�� �see Eq. �24��. We keep all �=0
modes �L ,T ,B� and the gapless flexural �F� modes with �
= �1. For the linear part of the strain tensor �see Eq. �5�� we
obtain from Eq. �23� the result

ulin�r� =
1

�2
R
�

k

eiky��− i�k 0

0 ik
	uL�k�

+ � 0 ik/2
ik/2 0

	uT�k� + �1/R 0

0 �k2R
	uB�k�

+
ik2R
�2

�
�=�

ei�x/R� �� �1 + ��kR

�1 + ��kR − �
	uF�k,��
 ,

while the nonlinear part �6� reads

unlin�r� =
1

2
R
�

k1,k2

ei�k1+k2�y��− �2

2 k1k2 0

0 − 1
2k1k2

	uL�k1�uL�k2� + � 0 �
2k1�k2 − k1�

�
2k1�k2 − k1� 0

	uL�k1�uT�k2�

+ � 1
2R2 0

0 − 1
2k1k2

	�uT�k1�uT�k2� + uB�k1�uB�k2�� + � 0 i
2R �k1 − k2�

i
2R �k1 − k2� 0

	uT�k1�uB�k2�

+ �− i�k1/R 0

0 i�k1
2k2R

	uL�k1�uB�k2� +
1
�2

�
�2=�

eix�2/R�� �2�2k1k2
2R �1 + ��k1k2/2

�1 + ��k1k2/2 �2�k2 + �k1�k1k2R
	uL�k1�uF�k2,�2�

+ � �k2
2 − �2k2/2R

− �2k2/2R − k1k2
	uT�k1�uF�k2,�2� + �i��2k2

2 ik2/2R

ik2/2R i�2k1k2
	uB�k1�uF�k2,�2�


−
k1k2

4 �
�1�2

eix��1+�2�/R� 1
��1k1+�2k2+���1+�2��k1+k2��R

2
��1k1+�2k2+���1+�2��k1+k2��R

2
�1 − �1�2�

	uF�k1,�1�uF�k2,�2�� .
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For completeness, we also list the long-wavelength form of the three-phonon amplitudes involving the breathing mode

ABBB =
K + � + 2�1 + 2�2

2R3 ,

ABTT =
K + �

2R3 ,

ALBB =
ik1

R2 �− K + � + 3�1 − ���1 + �1 − 3���2� ,

ALLB = −
k1k2

R
��K + 3�1 − �2��1 + �2� − 1 − 3�2��2� ,

ABFF = − 
�2,−�3

�3K − ��k2k3

4R
.
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